Method | Binary-Class Cloud Segmentation | Multi-Class Cloud Segmentation | ||||
---|---|---|---|---|---|---|
HRC | GF1 | GF2 | L1C | L2A | L8B | |
SCNN | 57.22 | 81.68 | 76.99 | 22.75 | 28.76 | 32.38 |
CDNetv1 | 77.79 | 81.82 | 78.20 | 60.35 | 62.39 | 34.58 |
CDNetv2 | 76.75 | 84.93 | 78.84 | 65.60 | 66.05 | 43.63 |
MCDNet | 53.50 | 85.16 | 78.36 | 44.80 | 46.52 | 33.85 |
UNetMobv2 | 79.91 | 91.71 | 80.44 | 71.65 | 70.36 | 47.76 |
DBNet | 77.78 | 91.36 | 78.68 | 65.52 | 65.65 | 51.41 |
HRCloudNet | 83.44 | 91.86 | 75.57 | 68.26 | 68.35 | 43.51 |
KappaMask | 67.48 | 92.42 | 72.00 | 41.27 | 45.28 | 42.12 |
Cloud-Adapter | 89.05 | 92.55 | 83.02 | 74.18 | 73.38 | 57.53 |
@misc{cloud-adapter,
title={Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images},
author={Xuechao Zou and Shun Zhang and Kai Li and Shiying Wang and Junliang Xing and Lei Jin and Congyan Lang and Pin Tao},
year={2024},
eprint={2411.13127},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.13127},
}
This work was supported in part by the National Natural Science Foundation of China under Grant No. 62072027.