Method | Background | Building | Road | Water | Barren | Forest | Agriculture | mIoU ↑ |
---|---|---|---|---|---|---|---|---|
TransUNet | 43.0 | 56.1 | 53.7 | 78.0 | 9.3 | 44.9 | 56.9 | 48.9 |
DC-Swin | 41.3 | 54.5 | 56.2 | 78.1 | 14.5 | 47.2 | 62.4 | 50.6 |
UNetFormer | 44.7 | 58.8 | 54.9 | 79.6 | 20.1 | 46.0 | 62.5 | 52.4 |
Hi-Resnet | 46.7 | 58.3 | 55.9 | 80.1 | 17.0 | 46.7 | 62.7 | 52.5 |
AerialFormer | 47.8 | 60.7 | 59.3 | 81.5 | 17.9 | 47.9 | 64.0 | 54.1 |
SFA-Net | 48.4 | 60.3 | 59.1 | 81.9 | 24.1 | 46.2 | 64.0 | 54.9 |
Ours | 47.6 | 61.2 | 59.1 | 81.6 | 23.8 | 48.8 | 64.8 | 55.3 |
Method | Clutter | Building | Road | Tree | Vegetation | Moving Car | Static Car | Human | mIoU ↑ |
---|---|---|---|---|---|---|---|---|---|
DANet | 64.9 | 58.9 | 77.9 | 68.3 | 61.5 | 59.6 | 47.4 | 9.1 | 60.6 |
ABCNet | 67.4 | 86.4 | 81.2 | 79.9 | 63.1 | 69.8 | 48.4 | 13.9 | 63.8 |
BANet | 66.7 | 85.4 | 80.7 | 78.9 | 62.1 | 69.3 | 52.8 | 21.0 | 64.6 |
SegFormer | 66.6 | 86.3 | 80.1 | 79.6 | 62.3 | 72.5 | 52.5 | 28.5 | 66.0 |
UNetFormer | 68.4 | 87.4 | 81.5 | 80.2 | 63.5 | 73.6 | 56.4 | 31.0 | 67.8 |
SFA-Net | 70.2 | 89.0 | 82.7 | 80.8 | 64.6 | 77.5 | 67.5 | 30.7 | 70.4 |
Ours | 71.0 | 89.7 | 83.2 | 82.1 | 66.1 | 75.0 | 59.0 | 41.4 | 70.9 |
Method | Impervious Surface | Building | Low Vegetation | Tree | Car | mF1 ↑ |
---|---|---|---|---|---|---|
DANet | 91.0 | 95.6 | 86.1 | 87.6 | 84.3 | 88.9 |
ABCNet | 93.5 | 96.9 | 87.9 | 89.1 | 95.8 | 92.7 |
Segmenter | 91.5 | 95.3 | 85.4 | 85.0 | 88.5 | 89.2 |
BANet | 93.3 | 96.7 | 87.4 | 89.1 | 96.0 | 92.5 |
SwinUperNet | 93.2 | 96.4 | 87.6 | 88.6 | 95.4 | 92.2 |
DC-Swin | 94.2 | 97.6 | 88.6 | 96.3 | 96.3 | 93.3 |
UNetFormer | 93.6 | 97.2 | 87.7 | 90.6 | 96.5 | 93.5 |
AerialFormer | 95.5 | 98.1 | 89.8 | 90.8 | 97.5 | 94.1 |
SFA-Net | 95.0 | 97.5 | 88.3 | 90.2 | 97.1 | 93.5 |
Ours | 96.1 | 97.9 | 90.6 | 91.2 | 97.5 | 94.7 |
Method | Impervious Surface | Building | Low Vegetation | Tree | Car | mF1 ↑ |
---|---|---|---|---|---|---|
DANet | 90.0 | 93.9 | 82.2 | 87.3 | 44.5 | 79.6 |
ABCNet | 92.7 | 95.2 | 84.5 | 89.7 | 85.3 | 89.5 |
BANet | 92.2 | 95.2 | 83.8 | 89.9 | 86.8 | 89.6 |
Segmenter | 89.8 | 93.0 | 81.2 | 88.9 | 67.6 | 84.1 |
SwinUperNet | 92.8 | 95.6 | 85.1 | 90.6 | 85.1 | 89.8 |
DC-Swin | 93.6 | 96.2 | 85.8 | 90.4 | 87.6 | 90.7 |
UNetFormer | 92.7 | 95.3 | 84.9 | 90.6 | 88.5 | 90.4 |
SFA-Net | 93.5 | 96.3 | 85.4 | 90.2 | 90.7 | 91.2 |
Ours | 97.1 | 96.0 | 85.4 | 90.5 | 90.5 | 91.9 |
Method | mIoU ↑ | OA ↑ | mF1 ↑ |
---|---|---|---|
MCDNet | 33.85 | 69.75 | 42.76 |
SCNN | 32.38 | 71.22 | 52.41 |
CDNetv1 | 34.58 | 68.16 | 45.80 |
KappaMask | 42.12 | 76.63 | 68.47 |
UNetMobv2 | 47.76 | 82.00 | 56.91 |
CDNetv2 | 43.63 | 78.56 | 70.33 |
HRCloudNet | 43.51 | 77.04 | 71.36 |
KTDA | 51.49 | 83.55 | 60.08 |
SFA-Net | 74.88 | 91.81 | 84.64 |
Ours | 82.16 | 94.90 | 89.65 |
Method | mIoU ↑ | OA ↑ | mF1 ↑ |
---|---|---|---|
FCN | 47.47 | 67.85 | 61.99 |
PSPNet | 47.95 | 69.12 | 62.55 |
DeepLabV3+ | 47.95 | 68.97 | 62.50 |
UNet | 48.17 | 69.77 | 62.34 |
SegFormer | 48.29 | 68.93 | 62.82 |
Mask2Former | 44.93 | 65.90 | 58.91 |
DINOv2 | 47.57 | 71.54 | 61.70 |
KTDA | 50.86 | 74.26 | 65.01 |
SFA-Net | 51.21 | 71.41 | 65.76 |
Ours | 51.96 | 72.26 | 66.27 |
@misc{zou2025dynamicdictionarylearningremote,
title={Dynamic Dictionary Learning for Remote Sensing Image Segmentation},
author={Xuechao Zou and Yue Li and Shun Zhang and Kai Li and Shiying Wang and Pin Tao and Junliang Xing and Congyan Lang},
year={2025},
eprint={2503.06683},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.06683},
}